
Towards Certification of Java Applications for Safety Critical
Projects

A.Andy Walter1

1:aicas GmbH, Haid- und Neu-Straße 18, 76131 Karlsruhe, Germany

Abstract:

The increasing complexity of embedded systems
also effects the area of safety critical applications.
Modern development tools and approaches which
are common for the development of desktop
applications are not available for ADA. At the same
time, using unsafe languages such as C and C++
bares a high risk in any embedded application.

A good successor for ADA would be Java: the well-
defined language eliminates a good deal of potential
errors inherently, which should ease certification
efforts for safety critical applications. Unfortunately,
the old certification standard DO-178B does not
really cover the usage of object oriented languages.
The certification process is hindered by a formalism,
which neglects the benefits and safety that object
oriented languages in general and Java in particular
could introduce for the usage in safety critical
applications. E.g., usage of automated memory
management is not possible with reasonable effort,
such that currently, developers of safety critical
applications undertake enormous efforts of doing
their own memory management, e.g., by using
object pools, which is not only more effort, but also
more dangerous than using a provably correct
automated tool would be.

Luckily, the succeeding certification standard
DO-178C will make certification of Java technology,
including the use of virtual machine technology and
garbage collection, easier.

Keywords: DO-178B, Safety Critical Java, JSR 302,
Certification

1. Introduction

Ada has been the preferred language for safety
critical applications, but this is beginning to change.
The number of Ada developers is diminishing, while
the complexity of applications is increasing. C and
C++ are poor alternatives to Ada, and many ideas
from the Ada community have made their way into
the realtime Java specifications.

Though strongly related to standard Java technology
such as J2SE and J2EE, realtime Java is really a
different beast. Realtime Java sets itself apart by
having much stronger threading semantics and a
means of avoiding timing anomalies due garbage
collection, ideally while maintaining the reference
consistency automatic object deallocation ensures.
In the past, reference consistency was maintained
by disallowing or severely limiting dynamic memory
management. This approach works well for state
machine like tasks, but not for more complex
applications. The up and coming Safety Critical Java
standard (JSR 302) provides some more flexibility
than currently tolerated by providing a stack like
approach to memory allocation and deallocation.
This will enable the Java language to be used at the
highest criticality levels in the near term, but does
not address increasing complexity well.

New work on object oriented technology in SG-5 of
the SC 205 / WG 71 Plenary to update the DO-178
standards, will make certification of Java technology,
including the use of virtual machine technology and
garbage collection, easier.

This talk gives an overview about what error types
can be completely avoided by Java in general, as
well as it's strengths in combination with code
verification. Important Java standards, such as the
realtime Specification for Java (JSR 1 and JSR 282)
and Safety Critical Java (JSR 302), are outlined, as
well as proposed changes from SG-5 for object
oriented technology. New garbage collection
technology will also be covered. This should give the
attendee a good background in the state-of-the-art of
realtime Java Technology and safety certification.

2. The Realtime Specification for Java (RTSJ)

The Realtime Specification for Java[2], which was
published by the Java Community in 2001 as JSR
1[4] and JSR 282[?], has been widely accepted as
the standard library extension for realtime Java
Virtual Machines and is used by most of the realtime
Java applications today.

Other than realtime, RTSJ also provides helpful

Page 1/7

standard classes for the general usage in embedded
applications. Its extensions range from
asynchronous event handlers - a more convenient
way of responding to events from outside the Java
world, such as interrupts and timer events - to a safe
access for specific memory regions such as memory
mapped I/O. With RTSJ, even device drivers can
be written completely in Java and can easily be
ported to other OSes and to other RTSJ compatible
Java Virtual Machines. But RTSJ alone is not
sufficient for certification.

Ordinary Java applications can be interrupted by
Java's automated memory management system,
called Garbage Collection, any time, as shown in
Illustration 1. Obviously, this is not suitable for
realtime applications.

RTSJ provides an acceptable, but inconvenient way
for running realtime Java applications even on Java
VMs without a realtime Garbage Collector, as shown
in Illustration 2. Realtime Threads can have higher
priorities than the Garbage Collector. Consequently,
those Threads are not allowed to access any objects
that might be affected by the Garbage Collector.
Instead, RTSJ introduces scoped memory: Having
entered a memory scope explicitly, new allocated
objects will be stored in this scope. Scopes are
hierarchic, as shown in Illustration 3. Scopes are left
in the reverse order of which they were entered,
such that assignments of objects to variables in a
higher level store are illegal. In C or C++, this would
result in a dangling pointer, which can be very
difficult to locate, while in RTSJ, an Exception would
be thrown.

Illustration 2: Thread Model in RTSJ: Realtime
Threads have higher priority than the Garbage
Collection

3. Realtime Garbage Collection

An automated memory management for realtime
applications needs to guarantee an upper bound of
time for each operation which is executed. Higher
priority threads must be able to interrupt a running
thread within a well-defined time, even if memory
management is currently taking place. For this, the
memory management (Garbage Collector) should
not run in a dedicated thread, but at allocation time
of new objects only: [9] and [10] describe
JamaicaVM's garbage collector, which guarantees
an upper bound of time for each object allocation
and is deterministic. Illustration 4 illustrates this
timing behaviour: In this example, the highest priority
thread rt1 does not allocate any objects.
Consequently, it is easy to prove that this thread by
no means can be affected by the garbage collector.
Nevertheless, even high priority, realtime threads
can safely allocate objects with this approach.

Page 2/7

Illustration 1: Ordinary Java Threads can be
interrupted by the Garbage Collection at any
time.

Illustration 4: A realtime Garbage Collection
must be deterministic and incremental, such
that higher priority threads can interrupt it any
time.

Scope 1

Scope 2

✗

Illustration 3: Scoped memory in RTSJ prevents
illegal assignments, which could lead to
dangling pointers on leaving a scope, by
throwing an exception at the time of the
assignment already.

4. Safety Critical Java: Towards Java
Certification

In 2006, a new working group of the Java
Community started developing a Java subset for the
usage in safety critical applications. This standard,
which will be published as JSR 302[?], is being
designed to be within the limitations of current
DO-178B certification practise. Safety Critical Java
(SCJava) aims for Level A, the highest criticality
level of DO-178B. In order to achieve this, only a
very limited subset of the standard Java classes and
the RTSJ will be part of SCJava. One of the
restrictions is that no garbage collection is used -
which means removing one of the strongest Java
features compared to Ada, C, and C++. Instead,
Safety Critical Java is based on RTSJ's Scoped
Memory approach. This is a significant improvement
over the usage of memory pools, which is common
in safety critical applications. Due to the increasing
complexity of safety critical applications, this kind of
manual memory management is becoming more
time-consuming as well as more error-prone. Even
more complexity of applications could be reduced by
the usage of a realtime garbage collector rather than
ScopedMemory, if it can be proven that the garbage
collection is both deterministic and realtime capable.

Despite of its limitations, SCJava is a good first step
towards the certification of Java applications
according to DO-178B, Level A. Object Orientation,
reusability, and platform independence are good
reasons to prefer SCJava over Ada or C for the use
in safety critical applications.

5. DO-178C: A New Certification Standard

The biggest problem for the DO-178B certification of
Java applications is that this old standard from 1992
does not consider Object Orientated Technology
(OOT). While OOT helps software developers in
writing reliable and portable applications with much
less effort than imperative languages do, it also
introduces a number of vulnerabilities. Those need
to be identified and addressed in the certification
process of safety critical applications. SG-5 of the
SC-205/WG-71 plenary is currently working on a
new set of objectives, activities, guidance, and
guidelines for the certification of OOT software.
These will become part of DO-178C[?], the
successor to DO-178B. Unlike its predecessors, the
new standard finally considers OOT explicitly. For
each new feature that is introduced by OOT, the
certification process has to prove, that it doesn't
affect the application's safety.
The good news for Java developers is that most of
the general vulnerabilities of OOT do not apply to
Java, either because of the language specification or
because of the automated memory management.

For safe OOT applications, it needs to be proven
that the following vulnerabilities can not occur:

a.) Inheritance and Redefinition
Inheritance is a core feature of Object Orientation.
The encapsulation of code and data provides a safe
means for shared code within an application or even
reusing it for other applications. Nevertheless, care
should be taken to maintain compatibility of
subclasses with their parents. In C++, static dispatch
and multiple inheritance can make this difficult.

Since a subclass is also a subtype, a general
problem with inheritance is maintaining type
compatibility. Any subclass should be substitutable
for its superclass. Liskov's Substitution Principle
defines type compatibility formally. This can be
stated succinctly using preconditions,
postconditions, and invariants: compared with those
of its superclass, no precondition may be
strengthened, and no postcondition or invariant may
be weakened in any subclass. Java Annotations are
an appropriate way of making such preconditions
and
postconditions part of the application. The
verification activities for any class should also be
performed on its subclasses. Vice versa, any class
should be verified using its own and its parent's
verification processes.

Another vulnerability is introduced with static
dispatch: which implementation of an overwritten
method is called, depends on the declared type of
the object. This is misleading and confusing: despite
a method having been overwritten, the original
method might be called on a subclass. The
behaviour of C++ is even worse than that: static and
dynamic dispatch coexist and can even be mixed
within the same class, such that some methods are
dispatched statically (which is the default in C++)
while others are declared virtual and dispatched
dynamically. In Java, method dispatch is always
virtual, such that, the method to be called will always
be decided based on the real type of an object, not
on the declared type.

Multiple inheritance introduces another vulnerability:
it is often not clear which implementation of a
method is called. Java avoids this confusion by
allowing multiple inheritance only for interfaces, but
not for implementations. While there is only one
possible method implementation to be called, care
needs to be taken with contradicting specifications
introduced by different interfaces which declare the
same method. However, multiple inheritance on the
implementation level, as supported by C++, is a
significantly complexer problem. In Java, it is
sufficient to make sure that all methods are
conforming to all of their declarations.

Page 3/7

b.) Parametric Polymorphism
Parametric polymorphism, which is available in Java
as Generics or in C++ as Templates, is a type-
consistent means to write reusable code whenever
sub-typing is not possible or convenient. An example
is a List, each of which is should only have a certain
type of element, but should be usable for all element
types.

Parametric polymorphism is a strong feature of
Object Oriented languages. For certification, each
unique instantiation of a parametrised type or
combination of types needs to be verified. Generics
in Java are type safe, and consistency is checked
at compile time as far as possible.

c.) Type Conversion
OO Type conversion, as well as in imperative
programming languages, is sometimes necessary,
but can cause unexpected behaviour. The strong
type system of Java tries to detect type
inconsistencies at compile time as far as possible,
and throws an exception at runtime in all other
cases. While throwing an exception is preferable
over working with corrupted data (like C or C++
would do), certification requires a static proof of
correctness. Static type checking, e.g., based on
Data Flow Analysis, can help to ensure the correct
typing of an application. Theoretically, Data Flow
Analysis can also be used for analysing C or C++
programs, but the result is less reliable than in Java
on any language that does not prohibit pointer
arithmetics.

d.) Overloading
When used with care, overloading can improve
readability and code maintenance. Along with
implicit type conversion, which is common in Object
Oriented programming languages, Overloading may
cause ambiguity. In order to avoid this, guidelines
should address the cases in which overloading is
allowed and discourage the use of implicit type
conversion.

e.) Exception Management
Most OO languages support throwing and handling
exceptions instead of returning from a method with
an ordinary return value. While Exceptions are a
safe and convenient way to deal with exceptional
situations, they introduce another vulnerability:
exceptions might leave the application in an
inconsistent state in case an unexpected exception
is handled very low in the call stack or even not
handled at all.
Java supports both checked and unchecked
exceptions. Unless a method declares throwing a
checked exception, it must be handled whenever

this exception might be thrown within the scope of
this method. The need to handle checked exceptions
explicitly makes their usage safe. Unchecked
exceptions are used for runtime errors such as
division by zero, bounds checks, and range checks,
and usually mainly thrown implicitly by the VM in
situations, which would cause the system to either
crash or run in an inconsistent state if this
situation had occured in a programming language
without exception management.

aicas has just released a Data Flow Analysis based
tool, Veriflux, which can prove that all unchecked
exceptions are handled by the application and detect
all occurrences of unhandled unchecked exceptions.
This approach ensures highest safety for critical
applications.

f.) Dynamic Memory Management
Complex tasks often require temporary data. There
are several possibilities to deal with the allocation
and deallocation of this data, the safest and most
convenient of which is an automated garbage
collector. SG-5 has determined the following
vulnerabilities related to dynamic memory
management. In Java, all but Heap memory
exhaustion can be avoided by a realtime capable
automated garbage collector.

f 1.) Ambiguous References: Objects overlap in the
same memory region. This can be avoided by an
allocator which ensures exclusivity, provided that
pointer arithmetics is not possible (as it is in Java) or
not used (which would be necessary, but hard to
ensure, e.g., in C or C++). Ambiguous references
can also be a consequence of the deallocation of an
object that was still in use.

f 2.) Fragmentation Starvation: A new object
cannot be allocated due to memory fragmentation.
To prevent this, memory should be organised in a
way that ensures all allocations will succeed,
provided that the system has enough of free
memory. Many Java garbage collectors can ensure
this. C applications, especially in Embedded
Systems, are often vulnerable for fragmentation
starvation.

f 3.) Deallocation Starvation: Garbage objects may
not be freed, or at least not fast enough, causing the
application to run out of memory. Some Java
garbage collectors can guarantee that they reclaim
memory fast enough to prevent this.

Page 4/7

f 4.) Heap Memory Exhaustion: The Heap may be
insufficient for the application to run. The application
needs to ensure that all simultaneously live objects
fit into the available memory. Again, data flow
analysis is a safe approach to ensure this.

f 5.) Premature Deallocation: Objects may be
removed although they are still in use. This causes
dangling pointers, which is a common problem in C
or C++ applications. However, all Java garbage
 collectors should be able to avoid this vulnerability.

f 6.) Lost Update and Stale Reference: In order to
prevent fragmentation starvation, some systems
move objects to a different location. Those need to
make sure that modifications of an object which is
being moved also effect the new location. Similarly,
any read access to this object should return the new
data of the modified object. Non-moving garbage
collectors or one that move objects atomically are
safe to use here.

f 7.) Indeterministic Allocation or Deallocation:
Dynamic memory management could interrupt the
application unexpectedly. Most automated garbage
collectors that prevent the other vulnerabilities in this
section, cannot guarantee determinism. For
example, the Boehm garbage collector, which is
commonly used in C++ applications, is vulnerable in
this respect. The garbage collector of the
JamaicaVM Java Virtual Machine guarantees
determinism and avoids all other vulnerabilities in
this section, with the exception of Heap memory
exhaustion.

Various techniques exist to deal with those
vulnerabilities, as shown in Tabular 1: manual heap
allocation, which is commonly used in Embedded C
applications that do not need to be certified, leave
most of them to be dealt with by the application
developers.

Object pooling is only slightly better: rather than
allocating and initialising a complex object from
scratch when it is needed and destroying it again
afterwards, the object could be taken from a prefilled
object pool, which is much faster than the allocation.
When the object is no longer needed, it is sent back
to the object pool rather than destroyed. While object
pools avoid the typical fragmentation of a malloc,
they introduce a new kind of fragmentation: while
free objects might still exist in some of the object
pools, the pool holding the kind of objects to be
allocated might be empty. Unlike manual heap
allocation, this is at least some kind of fragmentation
which the application developers have a chance for
dealing with manually. An advantage of object
pooling is the fast allocation time as long as there
are enough objects left in the pool.
Stack allocation is used to store local object on the
call stack, removing them automatically on method
exit. While this lowers the danger of fragmentation, it
also limits the extent to which frames can be shared
between threads and is only usable for local objects.
Scope based object management is slightly more
flexible, because it allows for several threads to
enter a certain frame simultaneously. At the same
time, scope allocation causes a higher risk of
fragmentation. The referencing rules of scoped
memory prevent dangling references, which is not
true for stack allication in languages such as C and
C++.
Automated garbage collection is the most convenient
and, if it solves the vulnerabilities identified by the
SG-5, safest way to deal with dynamic memory.
Care should be taken with the selection of the
garbage collector: some cannot ensure that free
memory can be detected early enough to avoid
deallocation and fragmentation starvation or that an
upper bound of allocation and deallocation time is
not exceeded. The realtime Garbage Collector of
JamaicaVM is able to guarantee all of this.

Page 5/7

Technique
Manual Allocation  ?    N/A 
Object Pooling      N/A 
Stack Allokation      N/A 
Scope Allokation      N/A 

      

N/A = not applicable, ? = difficult to ensure

Automated Memory
Management

 = managed by system,  = manually ensured in application

Am
big

ous
Refe

re
nces

M
em

ory
 F

ra
gm

enta
tio

n

M
em

ory
 H

ole
s

Not E
nough M

em
ory

Pre
m

atu
re

 D
eallo

cat io
n

Lost
 U

pdate
 /

Sta
le

 R
efe

re
nces

Undete
rm

in
is

t ic
 A

llo
cat io

n /

Deallo
catio

n

Tabular 1: Memory Management
Techniques and problems related to them

g.) Virtualisation
Virtualisation generally improves the portability and
reusability of application code and typically reduces
the complexity of applications. Java applications
generally run in such a virtual environment. The
main vulnerability here is that interpreted code is
not sufficiently validated, because it is treated as
data rather than code. DO-178C generally allows for
virtualisation, but requires that each layer is verified
independently, i.e., when certifying the interpreter, its
input can be treated as data, but an additional
verification of the interpreted code, in which the
interpreter is treated as execution platform is also
required.

6. Verification of Applications
Numerous sources for common programming errors
can be removed by the usage of Java for critical
applications: While they would entail severe runtime
errors in C or C++ applications, which would be hard
to locate and undeterministic, in Java applications
they lead to a compiler error in the best case, or a
clear runtime exception in the worst case. While this
is helpful for locating bugs as early as possible, it is
not sufficient as a proof of the correctness of the
application.
Since pointer arithmetics is prohibited in Java, this
language is well prepared for running static analysis
based on formal methods: Dataflow Analysis can
prove that certain types of errors do not occur in the
application. Alternatively, locations can be found, for
which such a proof was not possible. With this
technique, the value set for each occurrence of a
variable is determined. E.g., if this value set under
no circumstances contains the value 0, dividing by
this value is safe without potentially causing a
DivisionByZeroException.
It is possible to run Dataflow Analysis on C or C++
applications as well, but the result is weaker: The
Dataflow Analysis can not rely on determining the
complete value set for all variables. Faulty pointer
arithmetics, e.g., a wrong array access, could modify
any value in the memory. Tabular 2 illustrates, when
which error type can be detected.

7. Conclusion
Object Oriented Technology in general and Java in
particular improve the efficiency of developers by
reducing the complexity of applications. Automated
memory management, a strong type system and the
prohibition of pointer arithmetics and multiple
inheritance prevent hard-to-locate errors, which are
common in C and C++ applications.
RTSJ is a safe extension for realtime applications. It
is a reasonable, but insufficient standard for certified
Java applications, e.g., to DO-178B.
Combined with a realtime garbage collection,
certifications should be possible up to level C. The
successor DO-178C, which is currently being
defined, provides clear rules and guidelines for the
certification of OOT applications, with or without
automated garbage collection. This is an important
mile stone in the development of future safety critical
applications, which will have to solve more complex
tasks than their currently deployed counterparts, and
thus require better development tools.

Page 6/7

Type Error   o ✔

Deadlocks    ✔
Dangling Point ers   ✔ ✔

Fragmented Memory   ✔ ✔

Array Range   o ✔

Race Condit ions    ✔

  ✔ ✔

  o ✔

  o ✔
Except ions  o o ✔

Uninit ialised Variables
Nullpoint er Deref .

Division by Zero

  danger , o runtime error, ✔ detected during development

C C
++

Ja
va

Ja
va

 +

D
ata

f l
ow

A
naly

sis

Tabular 2: Common programming errors
and the time of their location

8. References
[1] Software considerations in airborne systems and
equipment certification. Advisory Circular DO-178B,
Radio Technical Commission for Aeronautics, 1992.
Errata Issued 3-26-99.
[2] Greg Bollela. Real-Time Specification for Java.
Addison-Wesley, 2001.
[3] J. Chelini, P. Heller, and SG-5. Technical
Supplement Template (Draft OOT supplement to
support DO-178C, Revision C of 25th of June 2009).
Technical Report RTCA/DO-OOT, SC-205/WG-71
Plenary, 2009.
[4] Peter Dibble. JSR 1, final release 3: RTSJ
version 1.02. http://jcp.org/en/jsr/detail?id=1.
[5] Peter Dibble. JSR 282: RTSJ version 1.1.
http://jcp.org/en/jsr/detail?id=282.
[6] Andy Walter, "Java in Safety Critical Systems",
Embedded World Conference 2009
[7] James J. Hunt, Isabel Tonin, and Fridtjof Siebert,
"Using global data flow analysis on bytecode to aid
worst case execution time analysis for real-time Java
programs". Volume 343 of ACM International
Conference Proceeding Series, 2008.
[8] C. Douglass Locke. JSR 302:Safety Critical Java
Technology. http://jcp.org/en/jsr/detail?id=302.
[9] Fridtjof Siebert. Hard Realtime Garbage
Collection in Modern Object Oriented Programming
Languages. aicas Books, 2002.
[10] Fridtjof Siebert. Realtime Garbage Collection in
the JamaicaVM 3.0. 5th International
Workshop on Java Technologies for Real-time and
Embedded Systems (JTRES 2007),
Vienna, Austria, September 2007. ACM Press.

Page 7/7

	designed to be within the limitations of current DO-178B certification practise. Safety Critical Java (SCJava) aims for Level A, the highest criticality level of DO-178B. In order to achieve this, only a very limited subset of the standard Java classes and the RTSJ will be part of SCJava. One of the restrictions is that no garbage collection is used - which means removing one of the strongest Java
	features compared to Ada, C, and C++. Instead, Safety Critical Java is based on RTSJ's Scoped Memory approach. This is a significant improvement over the usage of memory pools, which is common in safety critical applications. Due to the increasing complexity of safety critical applications, this kind of manual memory management is becoming more time-consuming as well as more error-prone. Even more complexity of applications could be reduced by the usage of a realtime garbage collector rather than ScopedMemory, if it can be proven that the garbage collection is both deterministic and realtime capable.
	Despite of its limitations, SCJava is a good first step towards the certification of Java applications according to DO-178B, Level A. Object Orientation, reusability, and platform independence are good
	reasons to prefer SCJava over Ada or C for the use in safety critical applications.
	5. DO-178C: A New Certification Standard
	this exception might be thrown within the scope of this method. The need to handle checked exceptions explicitly makes their usage safe. Unchecked exceptions are used for runtime errors such as
	division by zero, bounds checks, and range checks, and usually mainly thrown implicitly by the VM in situations, which would cause the system to either crash or run in an inconsistent state if this
	situation had occured in a programming language without exception management.
	aicas has just released a Data Flow Analysis based tool, Veriflux, which can prove that all unchecked exceptions are handled by the application and detect all occurrences of unhandled unchecked exceptions. This approach ensures highest safety for critical applications.
	f.) Dynamic Memory Management
	Complex tasks often require temporary data. There are several possibilities to deal with the allocation and deallocation of this data, the safest and most convenient of which is an automated garbage
	collector. SG-5 has determined the following vulnerabilities related to dynamic memory management. In Java, all but Heap memory exhaustion can be avoided by a realtime capable automated garbage collector.
	f 1.) Ambiguous References: Objects overlap in the same memory region. This can be avoided by an allocator which ensures exclusivity, provided that pointer arithmetics is not possible (as it is in Java) or not used (which would be necessary, but hard to ensure, e.g., in C or C++). Ambiguous references can also be a consequence of the deallocation of an object that was still in use.
	f 2.) Fragmentation Starvation: A new object cannot be allocated due to memory fragmentation. To prevent this, memory should be organised in a way that ensures all allocations will succeed, provided that the system has enough of free memory. Many Java garbage collectors can ensure this. C applications, especially in Embedded Systems, are often vulnerable for fragmentation starvation.
	f 3.) Deallocation Starvation: Garbage objects may not be freed, or at least not fast enough, causing the application to run out of memory. Some Java garbage collectors can guarantee that they reclaim memory fast enough to prevent this.
	f 4.) Heap Memory Exhaustion: The Heap may be insufficient for the application to run. The application needs to ensure that all simultaneously live objects fit into the available memory. Again, data flow analysis is a safe approach to ensure this.
	f 5.) Premature Deallocation: Objects may be removed although they are still in use. This causes dangling pointers, which is a common problem in C or C++ applications. However, all Java garbage
	 collectors should be able to avoid this vulnerability.
	f 6.) Lost Update and Stale Reference: In order to prevent fragmentation starvation, some systems move objects to a different location. Those need to make sure that modifications of an object which is being moved also effect the new location. Similarly, any read access to this object should return the new data of the modified object. Non-moving garbage collectors or one that move objects atomically are safe to use here.
	f 7.) Indeterministic Allocation or Deallocation: Dynamic memory management could interrupt the application unexpectedly. Most automated garbage collectors that prevent the other vulnerabilities in this section, cannot guarantee determinism. For example, the Boehm garbage collector, which is commonly used in C++ applications, is vulnerable in this respect. The garbage collector of the JamaicaVM Java Virtual Machine guarantees determinism and avoids all other vulnerabilities in this section, with the exception of Heap memory exhaustion.
	Various techniques exist to deal with those vulnerabilities, as shown in Tabular 1: manual heap allocation, which is commonly used in Embedded C applications that do not need to be certified, leave most of them to be dealt with by the application developers.
	Object pooling is only slightly better: rather than allocating and initialising a complex object from scratch when it is needed and destroying it again afterwards, the object could be taken from a prefilled object pool, which is much faster than the allocation. When the object is no longer needed, it is sent back to the object pool rather than destroyed. While object pools avoid the typical fragmentation of a malloc, they introduce a new kind of fragmentation: while free objects might still exist in some of the object pools, the pool holding the kind of objects to be allocated might be empty. Unlike manual heap allocation, this is at least some kind of fragmentation which the application developers have a chance for dealing with manually. An advantage of object pooling is the fast allocation time as long as there are enough objects left in the pool.
	Stack allocation is used to store local object on the call stack, removing them automatically on method exit. While this lowers the danger of fragmentation, it also limits the extent to which frames can be shared between threads and is only usable for local objects. Scope based object management is slightly more flexible, because it allows for several threads to enter a certain frame simultaneously. At the same time, scope allocation causes a higher risk of fragmentation. The referencing rules of scoped memory prevent dangling references, which is not true for stack allication in languages such as C and C++.
	Automated garbage collection is the most convenient and, if it solves the vulnerabilities identified by the SG-5, safest way to deal with dynamic memory. Care should be taken with the selection of the garbage collector: some cannot ensure that free memory can be detected early enough to avoid deallocation and fragmentation starvation or that an upper bound of allocation and deallocation time is not exceeded. The realtime Garbage Collector of JamaicaVM is able to guarantee all of this.
	g.) Virtualisation
	Virtualisation generally improves the portability and reusability of application code and typically reduces the complexity of applications. Java applications generally run in such a virtual environment. The main vulnerability here is that interpreted code is
	not sufficiently validated, because it is treated as data rather than code. DO-178C generally allows for virtualisation, but requires that each layer is verified independently, i.e., when certifying the interpreter, its input can be treated as data, but an additional verification of the interpreted code, in which the interpreter is treated as execution platform is also required.

	6. Verification of Applications
	Numerous sources for common programming errors can be removed by the usage of Java for critical applications: While they would entail severe runtime errors in C or C++ applications, which would be hard to locate and undeterministic, in Java applications they lead to a compiler error in the best case, or a clear runtime exception in the worst case. While this is helpful for locating bugs as early as possible, it is not sufficient as a proof of the correctness of the application.
	Since pointer arithmetics is prohibited in Java, this language is well prepared for running static analysis based on formal methods: Dataflow Analysis can prove that certain types of errors do not occur in the application. Alternatively, locations can be found, for which such a proof was not possible. With this technique, the value set for each occurrence of a variable is determined. E.g., if this value set under no circumstances contains the value 0, dividing by this value is safe without potentially causing a DivisionByZeroException.
	It is possible to run Dataflow Analysis on C or C++ applications as well, but the result is weaker: The Dataflow Analysis can not rely on determining the complete value set for all variables. Faulty pointer arithmetics, e.g., a wrong array access, could modify any value in the memory. Tabular 2 illustrates, when which error type can be detected.
	7. Conclusion
	8. References

