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Abstract: 

The  increasing  complexity  of  embedded  systems 
also effects the area of  safety  critical  applications. 
Modern  development  tools  and  approaches  which 
are  common  for  the  development  of  desktop 
applications are not available for ADA. At the same 
time,  using unsafe languages such as C and C++ 
bares a high risk in any embedded application.

A good successor for ADA would be Java: the well-
defined language eliminates a good deal of potential 
errors  inherently,  which  should  ease  certification 
efforts for safety critical applications. Unfortunately, 
the  old  certification  standard  DO-178B  does  not 
really cover the usage of object oriented languages. 
The certification process is hindered by a formalism, 
which  neglects  the benefits  and safety  that  object 
oriented languages in general and Java in particular 
could  introduce  for  the  usage  in  safety  critical 
applications.  E.g.,  usage  of  automated  memory 
management is not possible with reasonable effort, 
such  that  currently,  developers  of  safety  critical 
applications  undertake  enormous  efforts  of  doing 
their  own  memory  management,  e.g.,  by  using 
object pools, which is not only more effort, but also 
more  dangerous  than  using  a  provably  correct 
automated tool would be.

Luckily,  the  succeeding  certification  standard 
DO-178C will make certification of Java technology, 
including the use of virtual machine technology and 
garbage collection, easier.

Keywords: DO-178B, Safety Critical Java, JSR 302, 
Certification

1. Introduction

Ada has been the preferred language for safety 
critical applications, but this is beginning to change. 
The number of Ada developers is diminishing, while 
the complexity of applications is increasing. C and 
C++ are poor alternatives to Ada, and many ideas 
from the Ada community have made their way into 
the realtime Java specifications.

Though strongly related to standard Java technology 
such as J2SE and J2EE, realtime Java is really a 
different beast. Realtime Java sets itself apart by 
having much stronger threading semantics and a 
means of avoiding timing anomalies due garbage 
collection, ideally while maintaining the reference 
consistency automatic object deallocation ensures.
In the past, reference consistency was maintained 
by disallowing or severely limiting dynamic memory 
management. This approach works well for state 
machine like tasks, but not for more complex 
applications. The up and coming Safety Critical Java 
standard (JSR 302) provides some more flexibility 
than currently tolerated by providing a stack like
approach to memory allocation and deallocation. 
This will enable the Java language to be used at the 
highest criticality levels in the near term, but does 
not address increasing complexity well.

New work on object oriented technology in SG-5 of 
the SC 205 / WG 71 Plenary to update the DO-178 
standards, will make certification of Java technology, 
including the use of virtual machine technology and 
garbage collection, easier.

This talk gives an overview about what error types 
can be completely avoided by Java in general, as 
well as it's strengths in combination with code 
verification. Important Java standards, such as the 
realtime Specification for Java (JSR 1 and JSR 282) 
and Safety Critical Java (JSR 302), are outlined, as 
well as proposed changes from SG-5 for object 
oriented technology. New garbage collection 
technology will also be covered. This should give the 
attendee a good background in the state-of-the-art of 
realtime Java Technology and safety certification.

2. The Realtime Specification for Java (RTSJ)

The Realtime Specification for Java[2], which was 
published by the Java Community in 2001 as JSR 
1[4] and JSR 282[?], has been widely accepted as 
the standard library extension for realtime Java 
Virtual Machines and is used by most of the realtime 
Java applications today. 

Other than realtime, RTSJ also provides helpful 
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standard classes for the general usage in embedded 
applications. Its extensions range from 
asynchronous event handlers - a more convenient 
way of responding to events from outside the Java 
world, such as interrupts and timer events - to a safe 
access for specific memory regions such as memory 
mapped I/O. With RTSJ, even device drivers can
be written completely in Java and can easily be 
ported to other OSes and to other RTSJ compatible 
Java Virtual Machines. But RTSJ alone is not 
sufficient for certification.

Ordinary Java applications can be interrupted by 
Java's automated memory management system, 
called Garbage Collection, any time, as shown in 
Illustration 1. Obviously, this is not suitable for 
realtime applications.

RTSJ provides an acceptable, but inconvenient way 
for running realtime Java applications even on Java 
VMs without a realtime Garbage Collector, as shown 
in Illustration 2. Realtime Threads can have higher 
priorities than the Garbage Collector. Consequently, 
those Threads are not allowed to access any objects 
that might be affected by the Garbage Collector. 
Instead, RTSJ introduces scoped memory: Having 
entered a memory scope explicitly, new allocated 
objects will be stored in this scope. Scopes are 
hierarchic, as shown in  Illustration 3. Scopes are left 
in the reverse order of which they were entered, 
such that assignments of  objects to variables in a 
higher level store are illegal. In C or C++, this would 
result in a dangling pointer, which can be very 
difficult to locate, while in RTSJ, an Exception would 
be thrown.

Illustration 2: Thread Model in RTSJ: Realtime 
Threads have higher priority than the Garbage 
Collection

3. Realtime Garbage Collection

An automated memory management for realtime 
applications needs to guarantee an upper bound of 
time for each operation which is executed. Higher 
priority threads must be able to interrupt a running 
thread within a well-defined time, even if memory 
management is currently taking place. For this, the 
memory management (Garbage Collector) should 
not run in a dedicated thread, but at allocation time 
of new objects only: [9] and [10] describe 
JamaicaVM's garbage collector, which guarantees 
an upper bound of time for each object allocation 
and is deterministic. Illustration 4 illustrates this 
timing behaviour: In this example, the highest priority 
thread rt1 does not allocate any objects. 
Consequently, it is easy to prove that this thread by 
no means can be affected by the garbage collector. 
Nevertheless, even high priority, realtime threads 
can safely allocate objects with this approach.
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Illustration 1: Ordinary Java Threads can be 
interrupted by the Garbage Collection at any 
time.

Illustration 4: A realtime Garbage Collection 
must be deterministic and incremental, such 
that higher priority threads can interrupt it any 
time.

Scope 1

Scope 2

✗

Illustration 3: Scoped memory in RTSJ prevents 
illegal assignments, which could lead to 
dangling pointers on leaving a scope, by 
throwing an exception at the time of the 
assignment already.



4. Safety Critical Java: Towards Java 
Certification

In 2006, a new working group of the Java 
Community started developing a Java subset for the 
usage in safety critical applications. This standard, 
which will be published as JSR 302[?], is being
designed to be within the limitations of current 
DO-178B certification practise. Safety Critical Java 
(SCJava) aims for Level A, the highest criticality 
level of DO-178B. In order to achieve this, only a 
very limited subset of the standard Java classes and 
the RTSJ will be part of SCJava. One of the 
restrictions is that no garbage collection is used - 
which means removing one of the strongest Java
features compared to Ada, C, and C++. Instead, 
Safety Critical Java is based on RTSJ's Scoped 
Memory approach. This is a significant improvement 
over the usage of memory pools, which is common 
in safety critical applications. Due to the increasing 
complexity of safety critical applications, this kind of 
manual memory management is becoming more 
time-consuming as well as more error-prone. Even 
more complexity of applications could be reduced by 
the usage of a realtime garbage collector rather than 
ScopedMemory, if it can be proven that the garbage 
collection is both deterministic and realtime capable.

Despite of its limitations, SCJava is a good first step 
towards the certification of Java applications 
according to DO-178B, Level A. Object Orientation, 
reusability, and platform independence are good
reasons to prefer SCJava over Ada or C for the use 
in safety critical applications.

5. DO-178C: A New Certification Standard

The biggest problem for the DO-178B certification of 
Java applications is that this old standard from 1992 
does not consider Object Orientated Technology 
(OOT). While OOT helps software developers in
writing reliable and portable applications with much 
less effort than imperative languages do, it also 
introduces a number of vulnerabilities. Those need 
to be identified and addressed in the certification 
process of safety critical applications. SG-5 of the
SC-205/WG-71 plenary is currently working on a 
new set of objectives, activities, guidance, and 
guidelines for the certification of OOT software. 
These will become part of DO-178C[?], the 
successor to DO-178B. Unlike its predecessors, the 
new standard finally considers OOT explicitly. For 
each new feature that is introduced by OOT, the 
certification process has to prove, that it doesn't 
affect the application's safety.
The good news for Java developers is that most of 
the general vulnerabilities of OOT do not apply to 
Java, either because of the language specification or 
because of the automated memory management. 

For safe OOT applications, it needs to be proven 
that the following vulnerabilities can not occur:

a.) Inheritance and Redefinition
Inheritance is a core feature of Object Orientation. 
The encapsulation of code and data provides a safe 
means for shared code within an application or even 
reusing it for other applications. Nevertheless, care 
should be taken to maintain compatibility of 
subclasses with their parents. In C++, static dispatch 
and multiple inheritance can make this difficult.

Since a subclass is also a subtype, a general 
problem with inheritance is maintaining type 
compatibility. Any subclass should be substitutable 
for its superclass. Liskov's Substitution Principle 
defines type compatibility formally. This can be 
stated succinctly using preconditions, 
postconditions, and invariants: compared with those 
of its superclass, no precondition may be 
strengthened, and no postcondition or invariant may 
be weakened in any subclass. Java Annotations are 
an appropriate way of making such preconditions 
and
postconditions part of the application. The 
verification activities for any class should also be 
performed on its subclasses. Vice versa, any class 
should be verified using its own and its parent's
verification processes.

Another vulnerability is introduced with static 
dispatch: which implementation of an overwritten 
method is called, depends on the declared type of 
the object. This is misleading and confusing: despite 
a method having been overwritten, the original 
method might be called on a subclass. The 
behaviour of C++ is even worse than that: static and 
dynamic dispatch coexist and can even be mixed 
within the same class, such that some methods are 
dispatched statically (which is the default in C++) 
while others are declared virtual and dispatched 
dynamically. In Java, method dispatch is always 
virtual, such that, the method to be called will always 
be decided based on the real type of an object, not 
on the declared type.

Multiple inheritance introduces another vulnerability: 
it is often not clear which implementation of a 
method is called. Java avoids this confusion by 
allowing multiple inheritance only for interfaces, but
not for implementations. While there is only one 
possible method implementation to be called, care 
needs to be taken with contradicting specifications 
introduced by different interfaces which declare the
same method. However, multiple inheritance on the 
implementation level, as supported by C++, is a 
significantly complexer problem. In Java, it is 
sufficient to make sure that all methods are 
conforming to all of their declarations.
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b.) Parametric Polymorphism
Parametric polymorphism, which is available in Java 
as Generics or in C++ as Templates, is a type-
consistent means to write reusable code whenever 
sub-typing is not possible or convenient. An example 
is a List, each of which is should only have a certain 
type of element, but should be usable for all element 
types.

Parametric polymorphism is a strong feature of 
Object Oriented languages. For certification, each 
unique instantiation of a parametrised type or 
combination of types needs to be verified. Generics 
in Java are type safe, and consistency is checked
at compile time as far as possible.

c.) Type Conversion
OO Type conversion, as well as in imperative 
programming languages, is sometimes necessary, 
but can cause unexpected behaviour. The strong 
type system of Java tries to detect type 
inconsistencies at compile time as far as possible, 
and throws an exception at runtime in all other 
cases. While throwing an exception is preferable 
over working with corrupted data (like C or C++ 
would do), certification requires a static proof of 
correctness. Static type checking, e.g., based on 
Data Flow Analysis, can help to ensure the correct 
typing of an application. Theoretically, Data Flow 
Analysis can also be used for analysing C or C++ 
programs, but the result is less reliable than in Java 
on any language that does not prohibit pointer 
arithmetics.

d.) Overloading
When used with care, overloading can improve 
readability and code maintenance. Along with 
implicit type conversion, which is common in Object 
Oriented programming languages, Overloading may 
cause ambiguity. In order to avoid this, guidelines 
should address the cases in which overloading is 
allowed and discourage the use of implicit type 
conversion.

e.) Exception Management
Most OO languages support throwing and handling 
exceptions instead of returning from a method with 
an ordinary return value. While Exceptions are a 
safe and convenient way to deal with exceptional 
situations, they introduce another vulnerability: 
exceptions might leave the application in an 
inconsistent state in case an unexpected exception 
is handled very low in the call stack or even not 
handled at all.
Java supports both checked and unchecked 
exceptions. Unless a method declares throwing a 
checked exception, it must be handled whenever

this exception might be thrown within the scope of 
this method. The need to handle checked exceptions 
explicitly makes their usage safe. Unchecked 
exceptions are used for runtime errors such as
division by zero, bounds checks, and range checks, 
and usually mainly thrown implicitly by the VM in 
situations, which would cause the system to either 
crash or run in an inconsistent state if this
situation had occured in a programming language 
without exception management.

aicas has just released a Data Flow Analysis based 
tool, Veriflux, which can prove that all unchecked 
exceptions are handled by the application and detect 
all occurrences of unhandled unchecked exceptions. 
This approach ensures highest safety for critical 
applications.

f.) Dynamic Memory Management
Complex tasks often require temporary data. There 
are several possibilities to deal with the allocation 
and deallocation of this data, the safest and most 
convenient of which is an automated garbage
collector. SG-5 has determined the following 
vulnerabilities related to dynamic memory 
management. In Java, all but Heap memory 
exhaustion can be avoided by a realtime capable 
automated garbage collector.

f 1.) Ambiguous References: Objects overlap in the 
same memory region. This can be avoided by an 
allocator which ensures exclusivity, provided that 
pointer arithmetics is not possible (as it is in Java) or 
not used (which would be necessary, but hard to 
ensure, e.g., in C or C++). Ambiguous references 
can also be a consequence of the deallocation of an 
object that was still in use.

f 2.) Fragmentation Starvation: A new object 
cannot be allocated due to memory fragmentation. 
To prevent this, memory should be organised in a 
way that ensures all allocations will succeed, 
provided that the system has enough of free 
memory. Many Java garbage collectors can ensure 
this. C applications, especially in Embedded 
Systems, are often vulnerable for fragmentation 
starvation.

f 3.) Deallocation Starvation: Garbage objects may 
not be freed, or at least not fast enough, causing the 
application to run out of memory. Some Java 
garbage collectors can guarantee that they reclaim 
memory fast enough to prevent this.
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f 4.) Heap Memory Exhaustion: The Heap may be 
insufficient for the application to run. The application 
needs to ensure that all simultaneously live objects 
fit into the available memory. Again, data flow 
analysis is a safe approach to ensure this.

f 5.) Premature Deallocation: Objects may be 
removed although they are still in use. This causes 
dangling pointers, which is a common problem in C 
or C++ applications. However, all Java garbage
 collectors should be able to avoid this vulnerability.

f 6.) Lost Update and Stale Reference: In order to 
prevent fragmentation starvation, some systems 
move objects to a different location. Those need to 
make sure that modifications of an object which is 
being moved also effect the new location. Similarly, 
any read access to this object should return the new 
data of the modified object. Non-moving garbage 
collectors or one that move objects atomically are 
safe to use here.

f 7.) Indeterministic Allocation or Deallocation: 
Dynamic memory management could interrupt the 
application unexpectedly. Most automated garbage 
collectors that prevent the other vulnerabilities in this 
section, cannot guarantee determinism. For 
example, the Boehm garbage collector, which is 
commonly used in C++ applications, is vulnerable in 
this respect. The garbage collector of the 
JamaicaVM Java Virtual Machine guarantees 
determinism and avoids all other vulnerabilities in 
this section, with the exception of Heap memory 
exhaustion.

Various techniques exist to deal with those 
vulnerabilities, as shown in Tabular 1: manual heap 
allocation, which is commonly used in Embedded C 
applications that do not need to be certified, leave 
most of them to be dealt with by the application 
developers.

Object pooling is only slightly better: rather than 
allocating and initialising a complex object from 
scratch when it is needed and destroying it again 
afterwards, the object could be taken from a prefilled 
object pool, which is much faster than the allocation. 
When the object is no longer needed, it is sent back 
to the object pool rather than destroyed. While object 
pools avoid the typical fragmentation of a malloc, 
they introduce a new kind of fragmentation: while 
free objects might still exist in some of the object 
pools, the pool holding the kind of objects to be 
allocated might be empty. Unlike manual heap 
allocation, this is at least some kind of fragmentation 
which the application developers have a chance for 
dealing with manually. An advantage of object 
pooling is the fast allocation time as long as there 
are enough objects left in the pool.
Stack allocation is used to store local object on the 
call stack, removing them automatically on method 
exit. While this lowers the danger of fragmentation, it 
also limits the extent to which frames can be shared 
between threads and is only usable for local objects. 
Scope based object management is slightly more 
flexible, because it allows for several threads to 
enter a certain frame simultaneously. At the same 
time, scope allocation causes a higher risk of 
fragmentation. The referencing rules of scoped 
memory prevent dangling references, which is not 
true for stack allication in languages such as C and 
C++. 
Automated garbage collection is the most convenient 
and, if it solves the vulnerabilities identified by the 
SG-5, safest way to deal with dynamic memory. 
Care should be taken with the selection of the 
garbage collector: some cannot ensure that free 
memory can be detected early enough to avoid 
deallocation and fragmentation starvation or that an 
upper bound of allocation and deallocation time is 
not exceeded. The realtime Garbage Collector of 
JamaicaVM is able to guarantee all of this.
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Technique
Manual Allocation  ?    N/A 
Object Pooling      N/A 
Stack Allokation      N/A 
Scope Allokation      N/A 

      

N/A = not applicable, ? = difficult to ensure

Automated Memory 
Management

 = managed by system,  = manually ensured in application
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Tabular 1: Memory Management 
Techniques and problems related to them



g.) Virtualisation
Virtualisation generally improves the portability and 
reusability of application code and typically reduces 
the complexity of applications. Java applications 
generally run in such a virtual environment. The 
main vulnerability here is that interpreted code is
not sufficiently validated, because it is treated as 
data rather than code. DO-178C generally allows for 
virtualisation, but requires that each layer is verified 
independently, i.e., when certifying the interpreter, its 
input can be treated as data, but an additional 
verification of the interpreted code, in which the 
interpreter is treated as execution platform is also 
required.

6. Verification of Applications
Numerous sources for common programming errors 
can be removed by the usage of Java for critical 
applications: While they would entail severe runtime 
errors in C or C++ applications, which would be hard 
to locate and undeterministic, in Java applications 
they lead to a compiler error in the best case, or a 
clear runtime exception in the worst case. While this 
is helpful for locating bugs as early as possible, it is 
not sufficient as a proof of the correctness of the 
application. 
Since pointer arithmetics is prohibited in Java, this 
language is well prepared for running static analysis 
based on formal methods: Dataflow Analysis can 
prove that certain types of errors do not occur in the 
application. Alternatively, locations can be found, for 
which such a proof was not possible. With this 
technique, the value set for each occurrence of a 
variable is determined. E.g., if this value set under 
no circumstances contains the value 0, dividing by 
this value is safe without potentially causing a 
DivisionByZeroException.
It is possible to run Dataflow Analysis on C or C++ 
applications as well, but the result is weaker: The 
Dataflow Analysis can not rely on determining the 
complete value set for all variables. Faulty pointer 
arithmetics, e.g., a wrong array access, could modify 
any value in the memory. Tabular 2 illustrates, when 
which error type can be detected.

7. Conclusion
Object Oriented Technology in general and Java in 
particular improve the efficiency of developers by 
reducing the complexity of applications. Automated 
memory management, a strong type system and the 
prohibition of pointer arithmetics and multiple 
inheritance prevent hard-to-locate errors, which are 
common in C and C++ applications.
RTSJ is a safe extension for realtime applications. It 
is a reasonable, but insufficient standard for certified 
Java applications, e.g., to DO-178B.
Combined with a realtime garbage collection, 
certifications should be possible up to level C. The 
successor DO-178C, which is currently being 
defined, provides clear rules and guidelines for the 
certification of OOT applications, with or without 
automated garbage collection. This is an important 
mile stone in the development of future safety critical 
applications, which will have to solve more complex 
tasks than their currently deployed counterparts, and 
thus require better development tools.
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Type Error   o ✔

Deadlocks    ✔
Dangling Point ers   ✔ ✔

Fragmented Memory   ✔ ✔

Array Range   o ✔

Race Condit ions    ✔

  ✔ ✔

  o ✔

  o ✔
Except ions  o o ✔

Uninit ialised Variables
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Division by Zero
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Tabular 2: Common programming errors 
and the time of their location
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	designed to be within the limitations of current DO-178B certification practise. Safety Critical Java (SCJava) aims for Level A, the highest criticality level of DO-178B. In order to achieve this, only a very limited subset of the standard Java classes and the RTSJ will be part of SCJava. One of the restrictions is that no garbage collection is used - which means removing one of the strongest Java
	features compared to Ada, C, and C++. Instead, Safety Critical Java is based on RTSJ's Scoped Memory approach. This is a significant improvement over the usage of memory pools, which is common in safety critical applications. Due to the increasing complexity of safety critical applications, this kind of manual memory management is becoming more time-consuming as well as more error-prone. Even more complexity of applications could be reduced by the usage of a realtime garbage collector rather than ScopedMemory, if it can be proven that the garbage collection is both deterministic and realtime capable.
	Despite of its limitations, SCJava is a good first step towards the certification of Java applications according to DO-178B, Level A. Object Orientation, reusability, and platform independence are good
	reasons to prefer SCJava over Ada or C for the use in safety critical applications.
	5. DO-178C: A New Certification Standard
	this exception might be thrown within the scope of this method. The need to handle checked exceptions explicitly makes their usage safe. Unchecked exceptions are used for runtime errors such as
	division by zero, bounds checks, and range checks, and usually mainly thrown implicitly by the VM in situations, which would cause the system to either crash or run in an inconsistent state if this
	situation had occured in a programming language without exception management.
	aicas has just released a Data Flow Analysis based tool, Veriflux, which can prove that all unchecked exceptions are handled by the application and detect all occurrences of unhandled unchecked exceptions. This approach ensures highest safety for critical applications.
	f.) Dynamic Memory Management
	Complex tasks often require temporary data. There are several possibilities to deal with the allocation and deallocation of this data, the safest and most convenient of which is an automated garbage
	collector. SG-5 has determined the following vulnerabilities related to dynamic memory management. In Java, all but Heap memory exhaustion can be avoided by a realtime capable automated garbage collector.
	f 1.) Ambiguous References: Objects overlap in the same memory region. This can be avoided by an allocator which ensures exclusivity, provided that pointer arithmetics is not possible (as it is in Java) or not used (which would be necessary, but hard to ensure, e.g., in C or C++). Ambiguous references can also be a consequence of the deallocation of an object that was still in use.
	f 2.) Fragmentation Starvation: A new object cannot be allocated due to memory fragmentation. To prevent this, memory should be organised in a way that ensures all allocations will succeed, provided that the system has enough of free memory. Many Java garbage collectors can ensure this. C applications, especially in Embedded Systems, are often vulnerable for fragmentation starvation.
	f 3.) Deallocation Starvation: Garbage objects may not be freed, or at least not fast enough, causing the application to run out of memory. Some Java garbage collectors can guarantee that they reclaim memory fast enough to prevent this.
	f 4.) Heap Memory Exhaustion: The Heap may be insufficient for the application to run. The application needs to ensure that all simultaneously live objects fit into the available memory. Again, data flow analysis is a safe approach to ensure this.
	f 5.) Premature Deallocation: Objects may be removed although they are still in use. This causes dangling pointers, which is a common problem in C or C++ applications. However, all Java garbage
	 collectors should be able to avoid this vulnerability.
	f 6.) Lost Update and Stale Reference: In order to prevent fragmentation starvation, some systems move objects to a different location. Those need to make sure that modifications of an object which is being moved also effect the new location. Similarly, any read access to this object should return the new data of the modified object. Non-moving garbage collectors or one that move objects atomically are safe to use here.
	f 7.) Indeterministic Allocation or Deallocation: Dynamic memory management could interrupt the application unexpectedly. Most automated garbage collectors that prevent the other vulnerabilities in this section, cannot guarantee determinism. For example, the Boehm garbage collector, which is commonly used in C++ applications, is vulnerable in this respect. The garbage collector of the JamaicaVM Java Virtual Machine guarantees determinism and avoids all other vulnerabilities in this section, with the exception of Heap memory exhaustion.
	Various techniques exist to deal with those vulnerabilities, as shown in Tabular 1: manual heap allocation, which is commonly used in Embedded C applications that do not need to be certified, leave most of them to be dealt with by the application developers.
	Object pooling is only slightly better: rather than allocating and initialising a complex object from scratch when it is needed and destroying it again afterwards, the object could be taken from a prefilled object pool, which is much faster than the allocation. When the object is no longer needed, it is sent back to the object pool rather than destroyed. While object pools avoid the typical fragmentation of a malloc, they introduce a new kind of fragmentation: while free objects might still exist in some of the object pools, the pool holding the kind of objects to be allocated might be empty. Unlike manual heap allocation, this is at least some kind of fragmentation which the application developers have a chance for dealing with manually. An advantage of object pooling is the fast allocation time as long as there are enough objects left in the pool.
	Stack allocation is used to store local object on the call stack, removing them automatically on method exit. While this lowers the danger of fragmentation, it also limits the extent to which frames can be shared between threads and is only usable for local objects. Scope based object management is slightly more flexible, because it allows for several threads to enter a certain frame simultaneously. At the same time, scope allocation causes a higher risk of fragmentation. The referencing rules of scoped memory prevent dangling references, which is not true for stack allication in languages such as C and C++. 
	Automated garbage collection is the most convenient and, if it solves the vulnerabilities identified by the SG-5, safest way to deal with dynamic memory. Care should be taken with the selection of the garbage collector: some cannot ensure that free memory can be detected early enough to avoid deallocation and fragmentation starvation or that an upper bound of allocation and deallocation time is not exceeded. The realtime Garbage Collector of JamaicaVM is able to guarantee all of this.
	g.) Virtualisation
	Virtualisation generally improves the portability and reusability of application code and typically reduces the complexity of applications. Java applications generally run in such a virtual environment. The main vulnerability here is that interpreted code is
	not sufficiently validated, because it is treated as data rather than code. DO-178C generally allows for virtualisation, but requires that each layer is verified independently, i.e., when certifying the interpreter, its input can be treated as data, but an additional verification of the interpreted code, in which the interpreter is treated as execution platform is also required.

	6. Verification of Applications
	Numerous sources for common programming errors can be removed by the usage of Java for critical applications: While they would entail severe runtime errors in C or C++ applications, which would be hard to locate and undeterministic, in Java applications they lead to a compiler error in the best case, or a clear runtime exception in the worst case. While this is helpful for locating bugs as early as possible, it is not sufficient as a proof of the correctness of the application. 
	Since pointer arithmetics is prohibited in Java, this language is well prepared for running static analysis based on formal methods: Dataflow Analysis can prove that certain types of errors do not occur in the application. Alternatively, locations can be found, for which such a proof was not possible. With this technique, the value set for each occurrence of a variable is determined. E.g., if this value set under no circumstances contains the value 0, dividing by this value is safe without potentially causing a DivisionByZeroException.
	It is possible to run Dataflow Analysis on C or C++ applications as well, but the result is weaker: The Dataflow Analysis can not rely on determining the complete value set for all variables. Faulty pointer arithmetics, e.g., a wrong array access, could modify any value in the memory. Tabular 2 illustrates, when which error type can be detected.
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